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ABSTRACT

The dynamic analysis of complex and critical structures,
such as nuclear power plants, must not only enmploy both
theoretical and experimental analysis, but also combine
these two approaches to provide a unified description of the
structure. A theoretical a priori medel is useful in planning
g vibration test, while the data obtained from such testing
can be used to modify the a priori model so that it reproduces
the experimental data.

This paper illustrates several mathematical methods
useful in planning the placenent of excitors and accelerometers;
analyzing data to identify resonant frequencies, wodal damping
and mode shapes; nodifying the mass and stiffness properties
of the a priovi model (and consequently indicate lmproved
nethods of nodeling in Ffuturc studies); and identifying
unknown forces acting on the structure, once a good model has
been obtained.

Central to hliese methods is the use of a generalization

of the inverse of a matrix - the pseudo-inverse and the avail-

ability of efficient computer softwarc for its computation.
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The properties of the pseudo-inverse allow it to calculate
weighted least-mean-square and weighted minimum-norm solutions
to ill-conditioned lincar systems. It is consequently a
versatile tool in the analysis of vibrating systems where the
number of measurement and forcing points are often different

and the confidence in different measurements and models varies.
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. Introduction !
The reduction of a complex structure to a mathematical model results

" from a blending of skill, experience, and good judgement. The elegant mathe-

matical end product must not obscure the roots of the mode} in such subjec-
tive disciplines, Similarly, rather than treating a structure like a black
box, the vibration testing of a complex structure should be planned with re-
ference to an "a priori model' of the structure. This model must be capable
of directing the initial phases of testing and in turn of being modified by
the experimental results to yield a "modified model" which reproduces exper-
imental data. Consequently, the dynamic analysis of compleX and critical
structures must not only employ both theoretical and experimental analysis
but also combine these two approaches to provide a unified description of the
structure. This paper presents several examples of methods for the combined
use of theoretical and experimental analysis.

These methods are intended as examples and suggestions rather than a
state-of-the-axt review, although they have proven themselves successful in
application to real structures., The reader may wish to refer to other works
done in the fields of vibration testing and parameter identification. Smith
and his associates [1,2], for example, have carried out extensive testing of
nuclear power plants, Parameter identification of vibrating structures was
the topic of a recent symposium, edited by Pilkey dnd Cohen [3], as well as
an earlier summary by Young and On [4]. Especially noteworthy are the works
of Collins and his associates [5,6]. ;

2. A Mathematical Preliminarv--The Pseudo-Inverse

The pseudo-inverse is a generalization of the inverse of a matrix. It
has allowed a generalization and extension of my earlier work (see Ib&fiez
[7]1), is related to but more versatile than methods used by Collins [5,6] and
has been used in the analysis of geclogical seismic data by Jackson [8]. A
detailed discussion of the properties and computation of the pseudo-inverse
are found in reference [8) and i lcson's work, [4].

Consider a set of linear egquations

AX = Y )
where A is an n X m matrix, X is an m x £ column vector and Y is an n x 4
column vector. Problems in model, parvameter and force identification oft;n
reduce to the solution of eq. (1} when n is not equal to m, in which case the
classical solution

X = A"ty {(2)
is not valid as A"! does not exist.

The pseudo-inverse of a matrix A, however, denoted by AI, always exists,
regardless of the values of m and n and the linear dependence of the columns
and rows of A, Thus, the "solution"

z = Aly (3)
can always be defined. I present, without proof, several properties of Al
and 2:

e If A"' exists then Al = A-! and 1
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{i.e., the pseudo-inverse equals the classical inverse). . |
e Ifm < n (more equations than unknowns) or A is otherwise overdeter- |
mining X, then Z is the least mean square solution to eq. (1). That :

is,
| (az - Tz - Y) ¢ (AX - NTAX - ) (5)
' for any X, )

@ Ifm>n (fewer equations than unknowns) or A is otherwise undeter-
mining X, then of all possible solutions, X, Z has the minimum norm.
That is,
2Tz ¢ xTx (6)
for any X,

Two additional properties of the pseudo-inverse extend its use, Often
the elements of the vector Y vary greatly in size or the uncertainties in the
individual elements differ. We can define a vector W as

oW = Y 7N
where ¢ is a weighting matrix. For example, o may be a diagonal matrix of
standard deviations (square root of variance) of the elements of Y. In any
~case, the W elements are then of roughly equal size or variance, Substitu-
tion of eq. (7) into eq. (1) yields :

o YAX = W (8)
which is solved by :
X« 7= [o"'A}IW = [o-'A)1o" Y (9)

The least-mean-square property of the pseudo-inverse solution, eq. (5), now
becomes
(a2 - NTo-To-tqaz - ¥) ¢ (AX - NTo To 1 ax - ¥) {10)
~Thus, a weighted least-mean-square solution results.
Similarly, the solution X may be weighted by the substitution

8T = X !
to yield :
X = 2 = s[As)ly (11)
and the minimum norm property (eq. (6)) becomes ' 15
2T6Tsz < xTesTx (12) 5
Both types of weighting can be combined in the solution
X = s[lo-tasilo”ly (13)

The second property of interest requires more insight into the construc-
tion of the pseudo-inverse. Any matrix A can be expressed as its "singular '
value decomposition" :
A = usvT (14)
where U is an n x n set of orthogonal vectors Ty = 1), V is an m x m set of
orthogonal vectors (VTV = I} and S is an n X m matrix containing zeros every-
where except on its principal diagonal. On this diagonal, S contains the
"singular values' of A, some of which may be zero. |
The pseudo-inverse of A is given by ;
AL = ygayT (15)
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"where S* is the m x n matrix formed by transposing S and replacing all non-
‘zero terms by their inverses.

i I1£ the ratio of the largest to smallest nonzero singular value is so
"large that the smaller one might as well be considered zero, the matrix A is
Yalmost sin gular" and has a large "condition number." This indicates that
the information in eq. (1) using A is not as complete as might first appear--

some equations are, for all intents and purposes, linearly dependent. The

development of S* in eq. (15) allows us to set- to zero any exceedingly small
singular value and explicitly recognize this in the development of AIl. This
avoids numerical problems as the inverse of a small number is very large and

would, falsely, dominate Al if not excluded.

3. Use of the A Priori Model to Direct Vibration Testing
Two problems faced by the test engineer ave the proper placement of vi-

brators and accelerometers. I shall be concerned here only with forced vibra-
tion tests using sinusoidal vibrators, although other forms of tests can be
approached in a similar manner. The object of a vibration test is to ade-
quately excite and measure the important modes of vibration of the structure,
The data analysis is easier if, one mode at a time, each mode is excited and
detected significantly more than all others,

Consider first the case of testing a structure with n modes using m vi-
brators, The effective force exciting each mode is given by

e, f1
€3 £,
©o=EB=¢TR=l - (16)
él’l %m {:
where ej = effective force on mode i, E
£y = force on location &, E

{¢}g; = mode shape at location % for mode i, '
The maximum acceleration response due to z mode occurs roughly. at its resonant
frequency and is given by
€1

[¥il = (7
1imax zﬁiwi

modal damping for mode i,

vhere 84

Wi = effective mass for mode i.
For frequencies other than the resonant frequency, eq. {17) represents an
upper limit on the modal response. Suppose that we wish te excite mode j
strongly and suppress all other modes. Thus, we set

o 0 if;
[¥ilpax = l ? } . (18)
1 i=j ‘

Combining eq. (16} through eq. (18) yields J

0 1283 0 :

P o= T oTE; = BoTry (19)
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L;Bére F;—Ig—tﬁéuf6¥€é to excite the j-th mode. This equation may bo solved
{ by the pseudo-inverse method for the required forcing

Py = [3 7)1 (20)

e e e 25 D

The forces needed for the dominant excitation of each mode in turn is
given by the matrix
B e (Fy, Fay .o Bl = 6T1 T4 (0 denbity o)
(8eT)1
Thus, the pseudo-inverse of the weighted shape matrix has as columns, the
- force distribution required to, in turn, excite each mode significantly more
' ¢than the others.
: One naturally asks how well these forces can selectively. excite each
mode. Let the matrix Y be the response from forcing by E. From eq. {19) and
"eq. (Z1) there results
: ¥ = BeTR = [BeT][BeT}] (22)
"Clearly, if ¥ is close to the identity matrix, we have found a very good way
. to individually excite each mode.
As an example, consider the three-story structure shown in Figure 1,
with additional properties given in Table I. This structure was obtained
from Biggs' book [10] on structural dynamics. Consider testing the Biggs'

mmmmmmmmmmmmmmmmmmmm M
Inflexible Girder Structure (BIGS) using one, two or three vibrators to de-

rEine the three modé?"8¥“32£¥zitan. Thus, we must form F = {BéT]I and ¥ =
[BéT]{BéT}I for seven cases as indicated in Table II. )

‘ This table lends itself to many interpretations which coincide with the
test engineer's intuition., Consider the case of one vibrator on fioor one.
The ¥ matrix is not close to an identity matrix--hence indicating, quite cor-
rectly, that it would be difficult to produce "pure response' with only one
vibrator on floor one. Similar obsexvations hold for single vibrators on
floors two or three. Nevertheless, these results indicate that forcing on
floor two is the best for isolation of mode one; forcing on floor one is best
for isolation of mode two and three,

If two vibrators are used (cases 4-6), Y matrices result “which are
closer to identity matrices, indicating a greater ability to selectively ex-

(21)

cite modes, as expected. From these results, an engineer with only two vi-
brators would probably place them on floors 2 and 3, as this would allow a
fair selection of each of all three modes, If his interests lie with the
second mode only, for example, he might instead place them on floors 1 and 3.
In any case, the F matrix gives the optimal force distribution of the two vi-
brators. Lastly, if three vibrators are available, a perfect selection of
modes is possible, as indicated in case 7 by ¥ = [. This result is antici-
pated, of course. In addition, the desired force distribution is given by F.
The second problem faced by the test engineer is the placement of accel-
erometers and analysis of their response., A_sufficient number of accelero- ..
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(ﬁeters must be correctly placed on the structure to adequately define each
mode of vibration--its resonant peak and its shape (eigenvector). The res-
:punse measured by the accelerometers is given by
? X = oY (23)°
where Xj is the response of the accelerometer at location j. Note that the
shape matrix ¢ used here may be defined at many more or different points than
that used in dealing with vibrators. Thus, if We are measuring at 2 loca-
tions and there ave n modes, ¢ is £ x n. As we seek to isolate modal res-
ponse in our data analysis, it is natural to use the pseudo-inverse to yield

an estimate of Y based upon the measured X

Y = oI (24)
Should some of the accelerometer responses be considered more accurate than
others (due to instrument sensitivities, noise, etc.), a weighting can be
placed on each channel as was discussed in Section 2,

¥ = [o71¢)Tom X (25)
For simplicity, I will proceed with eq. (24}. '

One naturally asks if the estimator (eq. {24)) is a good one. Substitu-

tion of eq. (23) into eq. (24) yields '

¥ o= glov (26)
if ¢I¢ is very close to the identity matrix, then the placement of accelero-
meters allows a good definmition of each mode. For example, consider measur-
ing the response of the BIGS with one, two, or three accelerometers while
looking for the 1-st and 2-nd modes only., This yields seven possible accel-
erometer placement schemes as indicated in Table IIT.

Clearly, the first three cases, using only one accelerometer, cannot
yield good estimates of both modes. Thus, for example, one accelerometer on
floor one “sees" both modes on an equal basis. Note that one accelerometer
on floor 2 is effective in seeing mode 1 above mode 2. As anticipated, two
accelerometers, regardless of floor can distinguish between the two modes
{remember that we assume no third mode is present}. However, inspection of
the ¢ matrix indicates that configuration 5 uses the two accelerometers more
evenly than the other two, and might thus be preferable.

Lastly, consider measuring on all three floors. The two modes are now
overdetermined, but the ¢I matrix estimator indicates how they must be aver-
aged to resolve the modes, That this is the proper way is indicated by the
resulg ¢I¢ = 1,

The two methods just discussed to aid in placement of excitors and ac-
celerometers must be used in conjunction with, and not as a substitute for,
good sense, Clearly, not all locations on a structure are suitable for loca-
ting vibrators and acceleyometers. Even so, the number of permutations (only
seven for the BIGS) will grow astronomically for more complex structures.

The engineer must use his judgement to select a few potential configurations
and then check for their suitability by the wmethods thus presented. Also,
never forget that all these calculations are based on the a priori model
which is not entirely correct. Indeed, the vibration test is carried out be-
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|4. Identification of Eigenparameters ‘ i
The a priori model will not perfectly predict the results of the experi?
!mental vibration test. This will result in a discrepancy in "elgenparame-
‘ters"--the eigenvectors (mode shapes), the eigenvalues (resonant frequen-
‘cies), the effective modal masses and the effective modal dampings.
The transformation of the data in eq. (24); Y = ¢Ii, has a great advan-

tage in that it produces n functions as opposed to the original m functions,

In many applications m »> n, that is, the number of transducers greatly ex-
ceeds the number of significant modes and this transformation consequently
' reduces the amount of informatiom that must be processed,

0f course, this transformation does not produce purely modal response as
“the a priori ¢ 1is not exact, Nevertheless, we can now address ourselves To
“identification of an n-degree-of-freedom system ‘
' MY + CY + KY = E (27)
where the n x n mass, damping, and stiffness matrices--M, C, and K--are al-
most diagonal, We thus look for n x n matrices ¥, @, B, and W such that the
transformation ‘

Y = ¥YZ {28)

“yields
7+ 28af + 9%z = ¥TE :
¥IiMy = W (29)
yTey = w(28®)

¢Txy = w(e?)
-where 1, B, and W are diagonal matrices of eigenfrequencies, modgl dampings,
_and effective masses of both eq. (27) and the tested structure., Then, the
mode shapes of the structure, ¢, as modified by the experimental data are
'given by

be = ¢¥ (30)
where ¢ is the a priori mode shape matrix. Thus, ¥ is a correction to the a
priori model as supplied by the experimental data.

A method for finding ¥ and the associated 2, B, and W was presented by
Ib&fiez [7]} and has since been improved upon (see Ibdfiez [11]). Identifica-
‘tion of these parameters proceeds through the minimization of the error be-
tween experimental and model response, -as a function of the unknown parame-
ters. The error is defined by a criterion function, and its minimization
carried out by gradient techniques. This minimization is greatly facilitated
by reducing the number of unknown parameters from m X n in ¢ to only n X n in
Y.

As an example, consider Biggs! Inflexible Girder Structure (BIGS) and
Biggs' Flexible Girder Structure (BFGS) (whose properties are given in Fi-
gure 2 and Table IV). Note that these two models come from the same hypothe-
tical structure except that in the first case the floor girders are assumed
rigid, while in the second, their flexibility is taken into account.

! B o IS o bt i cende s o,
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Postulate that a design enginéer has analyzed Biggs' structure under the
 rigid girder assumption and produced an a priori model--BIGS. The assumption
iis symbolic of the assumptions made in reducing any complex structure to a :
‘mathematical model. The test engineer, however, performs a tast on the ac-
tual structure and consequently his data is effected by the flexibility of
the girders. A hypothetical forced vibration test with a vibrator on floor 1
of Biggs' structure using the BFGS model yields the response for each floor

Fa

as shown in Figure 3.

Given this "experimental" response, our task is to modify the a priori
BiGS model to yield the BFGS meodel, To make the task more realistic, the a
priori (BIGS) damping were assumed to be 0,14, 0.07, and 0.12% of critical,

" thus requiring an improvement in # as well as @ and W. Using the procedures
discussed in this section a ¥ matrix was found and as well as Qg, Be, and Wg
matrices, These, and the modified models shape matrix, ¢ = ¢5¥Y , is shown
in Table V. As can be seen, it has been possible to approximate the correct
BFGS eigenparameters from the "experimental'" data., While the average differ-
egnce is eignevalues between the BIGS and BFGS model is 7.00%, the identified
eigenvalues are within 0,08% of the BFGS model, The corresponding figures
for damping are 30.0% and 0.0%; for mode shape 21.4% and 1.4%.

S. Modification of the A Priori Model
From the identification scheme, we have a new set of eigenparameters

which can be expressed as perturbations on the a priori medel eigenparame-

ters:;
be = 0a¥ = ¢ (1 + ¥') . (31)
fg = Ry(I + D) (32)
We = Wa(I + G) (33)

We now compare the differences between the a priori and experimental models
‘mass and stiffness matrices, The values of ¥', D, and G will be used to mod-
ify the mass (M) and stiffness (K) matrices of the a priori model so that it
reproduces the experimental data.

First, note that Y', D, and G do not contain sufficient information to
uniquely define the requived changes in M and K, The latter contain only n’
“"knows" (typically the number of significant modes--n < 10) while the former
contain m® "unknowns' (typically the number of locations--m > 100)., Secondly
while any M and K reproducing the experimental results would be useful, we
are ultimately interested in finding out which portion of the a priori model
was incorrect--and why, Consideration of these two points requires‘the intro-
duction of additional information. In particular, the cngineer must specify
his confidence in the various portions of the a priori model, and limit the
ways in which the various portions may vary to achieve the modified M and K.

Let M, and Ky be the p-th way in which the mass and stiffness is allowed
to vary away from the a priori model., Let Up be a standard deviation, giving
the engineer's judgement as to how likely the p-th way of variation is. For

example, an engineer may use a small value of ¢_ if the p-th way of variation

p
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{is due to matﬁrlal properties such as Young's wodulus, or density, in which

!he has confidence, while he may use a large value if the p-~th way of variation

is due to effective joint stiffness, which is uncertain. {
The total change in stiffness is a weighted sum of the allowable changes

. Meotal = fsap p (34)

! Kiotal = E“pr (35)
Similarly, the total change in elgenparameters~—elgenva1ues, for example--is

i Deotal * E“pnp (36)

where Dp is the change due to variation Mp and K. Note that we have assumed
that apMp and apKp are sufficiently small so that linear perturbation theory
applies.

Clearly, a desirable relation is that the total change in eq. (36) equals
the identified change in eq. (32):

D = RapDp (37)
Our task is to solve for a set of op such that eq, {37) is satisfied as close-
ly as possible. These ap will then give the difference between the a priori
model and the experimental structure, Also, by referring to what part of the
model corresponds to the p-th way of variation, the engineer can determine
where and why the a priori model was incorrect.

Collins {5,6] has developed a program which looks explicitly at the sen-
sitivity of the eigenparameters with respect to the input parameters of a
finite element model, His sensitivities are analogous to Dp. He then devel-
ops a scheme to solve, essentially, for the ap weighted according to the en-
gineer supplied uncertainties, gp. This program requires detailed knowledge
and manipulation of the finite element modeling program, but is all the more
powerful and efficient due to this explicit procedure,

In a separate approach (Ibdfiez {11]), I use a general finite element pro-
gram to implicitly determine the sensitivities, The finite element program
is run p times, in each case with a perturbation in the p-th way of variation.
Comparing this with an unperturbed run yields the mass and stiffness pertur-

.bations Mp and K Using perturbation theory, the value of by can then be

quickly calculatgd. This approach is simpler to program and can be used in
conjunction with any structural analysis program. These gains, however, are
offset by the longer running time required by repeated running of the program.
Nevertheless, this approach also allows weighting by the Ups which is carried
out by using the pseudo-inverse (see IbdRez [11]),

As an example, consider the Biggs' BIGS/BFGS problem using the identified
values of D, from Section 4. Suppose that six allowable modes of change are
used, corresponding to the variation of three inter-floor springs and three
floor-to-ground springs. The allowable Kp are shown in Table VI as well as
the modified stiffness. As can be seen in Table VI, the correct X matrix has
been approximated. While the BIGS and BFGS X matrices differ by 15%, the

identified and BFGS matrices differ by only 5%.

6. identification of Operational Forces - !

~One use of the modified model is to identify forces acting on-a struc-
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{fﬁ%é:nwfﬂus, forqexaﬁple, assume that the structure isAB;ing acted upoﬂ—by
‘unknown transient forces at m points, and that we are measuring its response
'at % points. If n modes are being significantly excited then the modal res-
‘ponse is given by f
4 ¥ o= olX (38)
where ¢, is an £ X n matrix and ¥ is the measured acceleration. The modal
excitation is given by

E w ¢Lp (39)
where ¢, is an m X n matrix. (Both ¢; and ¢, are appropriately sglected por-
tions of the modified model shape matrix.} From eq. (39) we have

Foe (431'E , (40)

Now

Fr¥1; = ny)FIE) (41)
where 1; denotes the Fourier transform and hj is the modal transfer function
for the i-th mode.

LW o2
Y
hy(w) = : (42)
LW
1 - QT + 2/°T 83 T
Thus
1/hy
/hi 1/h; 0
Fee) - " ey = Iy (43)
0 " 1/hy,
and combining eq. (38), eq. {40), and eq. (43) yields
~Fwy = T F eI (44)

The use of eq. (44) and the fast Fourier transform (Cooley-Tukey) algor-
ithm allows us to compute F or its Fourier transform, quite easily:

ST Ll SYCR: (TTRT) “s)
These expressions minimize the number of Fourier transforms taken to 3 x m,
where n is the number of modes significantly excited, '

As an example, Figure 4 shows the transient forces used to excite the
BFGS on floors 1 and 2, and the resulting response, The arryows indicate the
various steps in evaluating eq. (45). The identified forces are compared to
the actual forces in Figure 5. As can be seen, a close identification of the
forces has been achieved.

This method can be used even when the number and location of exciting
forces is not the same as the measurement locations, or vegardless of the
number of modes involved, (although the modes must cover a frequency range
comparable to the frequency range of the input forces). As before, selective
weighting of each accelerometer is possible.

7. Inferences
This paper has illustrated several mathematical methods useful in the
planning and analysis of vibration tests. I have shown how the pseudo-
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inverse can perform weighted least-mean-square and minimum norm solutions of
iil-conditioned linear systems, and consequently is of great use in placing
vibrators and accelerometers, analyzing data to identify eigenparameters,
adjusting mass and stiffness matrices to fit experimental data, and identi-
fying unknown forces acting on a known structure.

Future work to integrate theoretical and experimental dynamic analysis
should be concerned with improving these methods by using them in a variety
of actual vibration tests. In this way, the optimal algorithms can be deter-
mined. These methods could zlso benefit from a more rigorous mathematical
development dealing with the effects of noise, error, and uncertainty in the
data. Nonlinear effects in structures must be considered. Asa minimum, all
vibration tests should be carried out at several different levels of forcing
and response and an appropriate linear model identified at each level. Dif-
ferences between these models will point to important nonlinear effects.
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TABLE 1

BIGGS' INFLEXIBLE GIRDER STRUCTURE--BIGS

24,630 0 0
M = 0 235,133 0 kilograms
0 0 11,567
13.17 -7.787 0
K = -7.787 15.570 -7.787 x 10°® newtons/meter
0 7.787 7.787
1.000 1.000 1.000
¢ = 1.471 -0.146 ~2.220
1.639 -1.041 2.680
Mode: 1 2 . 3
oo 8.325 24,06 . 35.09  (radians/sec)
Fo 1,325 3.830 5.584 (Hertz)
B 0.100 0.100 0.100 (fraction of critical)

W 105,800, 37,660, 221,700,  (kilogram)
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Mode:

Wo

>

BIGGS'

24,630

12,73
-70752
0.386

1,000
1.541
1.758

7.746

1,233
0.100
115,300,

TABLE IV
FLEXIBLE GIRDER STRUCTURE--BFGS

23,133

-7.752
. 14,35
~7.015

1,000
_0- 0515
“10123

22.65

3,605
0.100
39,280,

11,567

0.386
-7.015
6.629

1.000
-1.,873
2.075

33.65

5,355
0.100
155,600,

kilograms

x 10°® newtons/meter

(radians/sec)

(Hertz)
(fraction of critical)
(kilograms)
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IDENTIFICATION OF

TABLE VI

STIFFNESS MATRIX

Allowable Ways of Variation

(newtons/meter):

i 1.0

Ky = ;-1.0
L 0.0

1.0

Ky = @ 0.0
i 0.0

-1.

1

0.

0
0
0

0
L0
0

.0
.0
0

oo D

OO

A Priori Stiffness (BIGS):

f15.17
K = -7.79
0

-'7-79
15.57
-7.79

Effect Stiffness (BFGS):

[12.73 -7.75
K ={-7.79 15.57
L 0.39 -7.02
Tdentified Stiffness:
{12.87 “7.7%
K=1-7.73 14.82
| 0.32 7.26

-7,
7.

1O

1.0 0.0 -1.0

= 0.0 0.0 0.0 ,K; =
{-1.0 0.0 1.0
: )
0.0 0.0 0.0

=1 0.0 1.0 0.0i,K¢ =
. 0.0 0.0 0.0

o | i
79[ x 10° n/m
79

.39
.02 x 10% n/m
.63

.32 ]
L2610 x 10°% n/m
.88
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FIGURE 1.
BIGGS' INFLEXIBLE GIRDER STRUCTURE - "BiGS"
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FIGURE .2.

BIGGS' FLEXIBLE GIRDER STRUCTURE - "sFgs®
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